Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Infect Public Health ; 16(7): 1048-1056, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2313502

ABSTRACT

BACKGROUND: The global research community has made considerable progress in therapeutic and vaccine research during the COVID-19 pandemic. Several therapeutics have been repurposed for the treatment of COVID-19. One such compound is, favipiravir, which was approved for the treatment of influenza viruses, including drug-resistant influenza. Despite the limited information on its molecular activity, clinical trials have attempted to determine the effectiveness of favipiravir in patients with mild to moderate COVID-19. Here, we report the structural and molecular interaction landscape of the macromolecular complex of favipiravir-RTP and SARS-CoV-2 RdRp with the RNA chain. METHODS: Integrative bioinformatics was used to reveal the structural and molecular interaction landscapes of two macromolecular complexes retrieved from RCSB PDB. RESULTS: We analyzed the interactive residues, H-bonds, and interaction interfaces to evaluate the structural and molecular interaction landscapes of the two macromolecular complexes. We found seven and six H-bonds in the first and second interaction landscapes, respectively. The maximum bond length is 3.79 Å. In the hydrophobic interactions, five residues (Asp618, Asp760, Thr687, Asp623, and Val557) were associated with the first complex and two residues (Lys73 and Tyr217) were associated with the second complex. The mobilities, collective motion, and B-factor of the two macromolecular complexes were analyzed. Finally, we developed different models, including trees, clusters, and heat maps of antiviral molecules, to evaluate the therapeutic status of favipiravir as an antiviral drug. CONCLUSIONS: The results revealed the structural and molecular interaction landscape of the binding mode of favipiravir with the nsp7-nsp8-nsp12-RNA SARS-CoV-2 RdRp complex. Our findings can help future researchers in understanding the mechanism underlying viral action and guide the design of nucleotide analogs that mimic favipiravir and exhibit greater potency as antiviral drugs against SARS-CoV-2 and other infectious viruses. Thus, our work can help in preparing for future epidemics and pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , RNA-Dependent RNA Polymerase , RNA , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry
2.
Int J Biol Macromol ; 242(Pt 2): 124893, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2313040

ABSTRACT

Emerging SARS-CoV-2 variants and subvariants are great concerns for their significant mutations, which are also responsible for vaccine escape. Therefore, the study was undertaken to develop a mutation-proof, next-generation vaccine to protect against all upcoming SARS-CoV-2 variants. We used advanced computational and bioinformatics approaches to develop a multi-epitopic vaccine, especially the AI model for mutation selection and machine learning (ML) strategies for immune simulation. AI enabled and the top-ranked antigenic selection approaches were used to select nine mutations from 835 RBD mutations. We selected twelve common antigenic B cell and T cell epitopes (CTL and HTL) containing the nine RBD mutations and joined them with the adjuvants, PADRE sequence, and suitable linkers. The constructs' binding affinity was confirmed through docking with TLR4/MD2 complex and showed significant binding free energy (-96.67 kcal mol-1) with positive binding affinity. Similarly, the calculated eigenvalue (2.428517e-05) from the NMA of the complex reveals proper molecular motion and superior residues' flexibility. Immune simulation shows that the candidate can induce a robust immune response. The designed mutation-proof, multi-epitopic vaccine could be a remarkable candidate for upcoming SARS-CoV-2 variants and subvariants. The study method might guide researchers in developing AI-ML and immunoinformatics-based vaccines for infectious disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Molecular Docking Simulation , Epitopes, B-Lymphocyte , Vaccines, Subunit , Artificial Intelligence
4.
Geroscience ; 2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-2313663

ABSTRACT

The Omicron variant is spreading rapidly throughout several countries. Thus, we comprehensively analyzed Omicron's mutational landscape and compared mutations with VOC/VOI. We analyzed SNVs throughout the genome, and AA variants (NSP and SP) in VOC/VOI, including Omicron. We generated heat maps to illustrate the AA variants with high mutation prevalence (> 75% frequency) of Omicron, which demonstrated eight mutations with > 90% prevalence in ORF1a and 29 mutations with > 75% prevalence in S-glycoprotein. A scatter plot for Omicron and VOC/VOI's cluster evaluation was computed. We performed a risk analysis of the antibody-binding risk among four mutations (L452, F490, P681, D614) and observed three mutations (L452R, F490S, D614G) destabilized antibody interactions. Our comparative study evaluated the properties of 28 emerging mutations of the S-glycoprotein of Omicron, and the ΔΔG values. Our results showed K417N with minimum and Q954H with maximum ΔΔG value. Furthermore, six important RBD mutations (G339D, S371L, N440K, G446S, T478K, Q498R) were chosen for comprehensive analysis for stabilizing/destabilizing properties and molecular flexibility. The G339D, S371L, N440K, and T478K were noted as stable mutations with 0.019 kcal/mol, 0.127 kcal/mol, 0.064 kcal/mol, and 1.009 kcal/mol. While, G446S and Q498R mutations showed destabilizing results. Simultaneously, among six RBD mutations, G339D, G446S, and Q498R mutations increased the molecular flexibility of S-glycoprotein. This study depicts the comparative mutational pattern of Omicron and other VOC/VOI, which will help researchers to design and deploy novel vaccines and therapeutic antibodies to fight against VOC/VOI, including Omicron.

9.
Vaccines (Basel) ; 11(3)2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2254189

ABSTRACT

We are currently approaching three years since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 has caused extensive disruptions in everyday life, public health, and the global economy. Thus far, the vaccine has worked better than expected against the virus. During the pandemic, we experienced several things, such as the virus and its pathogenesis, clinical manifestations, and treatments; emerging variants; different vaccines; and the vaccine development processes. This review describes how each vaccine has been developed and approved with the help of modern technology. We also discuss critical milestones during the vaccine development process. Several lessons were learned from different countries during the two years of vaccine research, development, clinical trials, and vaccination. The lessons learned during the vaccine development process will help to fight the next pandemic.

11.
Folia Microbiol (Praha) ; 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2252126

ABSTRACT

The Delta variant is one of the alarming variants of the SARS-CoV-2 virus that have been immensely detrimental and a significant cause of the prolonged pandemic (B.1.617.2). During the SARS-CoV-2 pandemic from December 2020 to October 2021, the Delta variant showed global dominance, and afterwards, the Omicron variant showed global dominance. Delta shows high infectivity rate which accounted for nearly 70% of the cases after December 2020. This review discusses the additional attributes that make the Delta variant so infectious and transmissible. The study also focuses on the significant mutations, namely the L452R and T478K present on the receptor-binding domain of spike (S)-glycoprotein, which confers specific alterations to the Delta variant. Considerably, we have also highlighted other notable factors such as the immune escape, infectivity and re-infectivity, vaccine escape, Ro number, S-glycoprotein stability, cleavage pattern, and its binding affinity with the host cell receptor protein. We have also emphasized clinical manifestations, symptomatology, morbidity, and mortality for the Delta variant compared with other significant SARS-CoV-2 variants. This review will help the researchers to get an elucidative view of the Delta variant to adopt some practical strategies to minimize the escalating spread of the SARS-CoV-2 Delta variant.

13.
Viruses ; 15(1)2023 Jan 05.
Article in English | MEDLINE | ID: covidwho-2245423

ABSTRACT

The COVID-19 pandemic has created significant concern for everyone. Recent data from many worldwide reports suggest that most infections are caused by the Omicron variant and its sub-lineages, dominating all the previously emerged variants. The numerous mutations in Omicron's viral genome and its sub-lineages attribute it a larger amount of viral fitness, owing to the alteration of the transmission and pathophysiology of the virus. With a rapid change to the viral structure, Omicron and its sub-variants, namely BA.1, BA.2, BA.3, BA.4, and BA.5, dominate the community with an ability to escape the neutralization efficiency induced by prior vaccination or infections. Similarly, several recombinant sub-variants of Omicron, namely XBB, XBD, and XBF, etc., have emerged, which a better understanding. This review mainly entails the changes to Omicron and its sub-lineages due to it having a higher number of mutations. The binding affinity, cellular entry, disease severity, infection rates, and most importantly, the immune evading potential of them are discussed in this review. A comparative analysis of the Delta variant and the other dominating variants that evolved before Omicron gives the readers an in-depth understanding of the landscape of Omicron's transmission and infection. Furthermore, this review discusses the range of neutralization abilities possessed by several approved antiviral therapeutic molecules and neutralizing antibodies which are functional against Omicron and its sub-variants. The rapid evolution of the sub-variants is causing infections, but the broader aspect of their transmission and neutralization has not been explored. Thus, the scientific community should adopt an elucidative approach to obtain a clear idea about the recently emerged sub-variants, including the recombinant variants, so that effective neutralization with vaccines and drugs can be achieved. This, in turn, will lead to a drop in the number of cases and, finally, an end to the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Immune Evasion
15.
Vaccines (Basel) ; 11(1)2022 Dec 23.
Article in English | MEDLINE | ID: covidwho-2228691

ABSTRACT

Pattern recognition plays a critical role in integrative bioinformatics to determine the structural patterns of proteins of viruses such as SARS-CoV-2. This study identifies the pattern of SARS-CoV-2 proteins to depict the structure-function relationships of the protein alphabets of SARS-CoV-2 and COVID-19. The assembly enumeration algorithm, Anisotropic Network Model, Gaussian Network Model, Markovian Stochastic Model, and image comparison protein-like alphabets were used. The distance score was the lowest with 22 for "I" and highest with 40 for "9". For post-processing and decision, two protein alphabets "C" (PDB ID: 6XC3) and "S" (PDB ID: 7OYG) were evaluated to understand the structural, functional, and evolutionary relationships, and we found uniqueness in the functionality of proteins. Here, models were constructed using "SARS-CoV-2 proteins" (12 numbers) and "non-SARS-CoV-2 proteins" (14 numbers) to create two words, "SARS-CoV-2" and "COVID-19". Similarly, we developed two slogans: "Vaccinate the world against COVID-19" and "Say no to SARS-CoV-2", which were made with the proteins structure. It might generate vaccine-related interest to broad reader categories. Finally, the evolutionary process appears to enhance the protein structure smoothly to provide suitable functionality shaped by natural selection.

16.
Environ Sci Pollut Res Int ; 2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2174822

ABSTRACT

The global outbreak of the COVID-19 pandemic has given rise to a significant health emergency to adverse impact on environment, and human society. The COVID-19 post-pandemic not only affects human beings but also creates pollution crisis in environment. The post-pandemic situation has shown a drastic change in nature due to biomedical waste load and other components. The inadequate segregation of untreated healthcare wastes, chemical disinfectants, and single-use plastics leads to contamination of the water, air, and agricultural fields. These materials allow the growth of disease-causing agents and transmission. Particularly, the COVID-19 outbreak has posed a severe environmental and health concern in many developing countries for infectious waste. In 2030, plastic enhances a transboundary menace to natural ecological communities and public health. This review provides a complete overview of the COVID-19 pandemic on environmental pollution and its anthropogenic impacts to public health and natural ecosystem considering short- and long-term scenarios. The review thoroughly assesses the impacts on ecosystem in the terrestrial, marine, and atmospheric realms. The information from this evaluation can be utilized to assess the short-term and long-term solutions for minimizing any unfavorable effects. Especially, this topic focuses on the excessive use of plastics and their products, subsequently with the involvement of the scientific community, and policymakers will develop the proper management plan for the upcoming generation. This article also provides crucial research gap knowledge to boost national disaster preparedness in future perspectives.

17.
Int J Biol Macromol ; 229: 70-80, 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2165362

ABSTRACT

In the last two years, the world encountered the SARS-CoV-2 virus, which is still dominating the population due to the absence of a viable treatment. To eradicate the global pandemic, scientists, doctors, and researchers took an exceptionally significant initiative towards the development of effective therapeutics to save many lifes. This review discusses about the single-domain antibodies (sdAbs), also called nanobodies, their structure, and their types against the infections of dreadful SARS-CoV-2 virus. A precise description highlights the nanobodies and their therapeutic application against the other selected viruses. It aims to focus on the extraordinary features of these antibodies compared to the conventional therapeutics like mAbs, convalescent plasma therapy, and vaccines. The stable structure of these nanobodies along with the suitable mechanism of action also confers greater resistance to the evolving variants with numerous mutations. The nanobodies developed against SARS-CoV-2 and its mutant variants have shown the greater neutralization potential than the primitive ones. Engineering of these specialized antibodies by modern biotechnological approaches will surely be more beneficial in treating this COVID-19 pandemic along with certain other viral infections.


Subject(s)
COVID-19 , Single-Domain Antibodies , Virus Diseases , Humans , SARS-CoV-2 , COVID-19/therapy , Single-Domain Antibodies/therapeutic use , Pandemics , COVID-19 Serotherapy , Antibodies, Monoclonal , Antibodies, Viral/therapeutic use , Antibodies, Neutralizing/therapeutic use
18.
Mol Biotechnol ; 2022 Dec 04.
Article in English | MEDLINE | ID: covidwho-2148952

ABSTRACT

SARS-CoV-2 has a single-stranded RNA genome (+ssRNA), and synthesizes structural and non-structural proteins (nsps). All 16 nsp are synthesized from the ORF1a, and ORF1b regions associated with different life cycle preprocesses, including replication. The regions of ORF1a synthesizes nsp1 to 11, and ORF1b synthesizes nsp12 to 16. In this paper, we have predicted the secondary structure conformations, entropy & mountain plots, RNA secondary structure in a linear fashion, and 3D structure of nsp coding genes of the SARS-CoV-2 genome. We have also analyzed the A, T, G, C, A+T, and G+C contents, GC-profiling of these genes, showing the range of the GC content from 34.23 to 48.52%. We have observed that the GC-profile value of the nsp coding genomic regions was less (about 0.375) compared to the whole genome (about 0.38). Additionally, druggable pockets were identified from the secondary structure-guided 3D structural conformations. For secondary structure generation of all the nsp coding genes (nsp 1-16), we used a recent algorithm-based tool (deep learning-based) along with the conventional algorithms (centroid and MFE-based) to develop secondary structural conformations, and we found stem-loop, multi-branch loop, pseudoknot, and the bulge structural components, etc. The 3D model shows bound and unbound forms, branched structures, duplex structures, three-way junctions, four-way junctions, etc. Finally, we identified binding pockets of nsp coding genes which will help as a fundamental resource for future researchers to develop RNA-targeted therapeutics using the druggable genome.

SELECTION OF CITATIONS
SEARCH DETAIL